Begin typing your search above and press return to search.
Schools breeding hatred
access_time 14 Sep 2023 10:37 AM GMT
access_time 16 Aug 2023 5:46 AM GMT
Remembering the Teachers
access_time 5 Sep 2023 6:24 AM GMT
Homechevron_rightTechnologychevron_rightResearchers develop...

Researchers develop stretchable batteries for next-gen wearables

Researchers develop stretchable batteries for next-gen wearables

Seoul: Scientists in South Korea have developed stretchable aqueous lithium-ion battery batteries that may power the next generation of wearable devices.

Using hybrid carbon/polymer (HCP) composite as a stretchable current collector, the research team developed a highly stretchable rechargeable battery based on aqueous electrolytes, according to the study published in the journal Advanced Energy Materials.

"Our findings are expected to expand the number of stretchable nanocomposites with electrochemical and mechanical properties available for use in a wide variety of applications," said Kwanyong Seo, Professor at Ulsan National Institute of Science and Technology (UNIST).

Stretchable electronic devices have recently attracted tremendous attention as next-generation devices due to their immense flexibility.

The increasing interest and demand of flexible electronics has fueled the search for highly stretchable electrodes with high mechanical durability and high electrical conductivity during deformation.

Although many methods have been proposed for these electrodes, none of them has managed to simultaneously achieve high stretchability for the electrodes and have a scalable manufacturing process.

The research led by Professor Soojin Park of UNIST solved such issues using a conductive polymer composite, composed of Jabuticaba-like hybrid carbon fillers containing carbon nanotubes and carbon black in a simple solution process.

The shape of this structure resembled that of a Jabuticaba tree, the Brazilian grapetree, the researchers said.

The research team observed that the HCP composite is found to effectively retain its electrical conductivity, even under high strain rates.

This makes it suitable for use in highly stretchable aqueous lithium-ion batteries, the study said.

Show Full Article
Next Story